

 Performance Tuning Guidelines for Low
Latency Response on AMD EPYC™ 7002

Series Processor Based Servers

Publication 57037_1.0

Revision 1.0

Issue Date November, 2020

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 2

© 2020 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been
taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no
obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of
noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other
products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document.
Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's
Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, AMD EPYC, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names and links to
external sites used in this publication are for identification purposes only and may be trademarks of their respective companies.

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 3

 OVERVIEW .. 4

1.1 SYSJITTER ...4

 HARDWARE CONFIGURATION ... 5

 BIOS CONFIGURATION ...7

3.1 CONSIDERATIONS ... 7
3.2 BIOS PROFILE SETTINGS .. 8

3.2.1 Low Latency .. 8
3.2.2 Custom .. 8

3.3 BIOS, MEMORY, AND CPU VERSION ... 13
3.3.1 NUMA Node .. 14
3.3.2 Processor ... 14
3.3.3 DRAM .. 15

 OPERATING SYSTEM .. 16

4.1 SUT TOPOLOGY ... 16
4.1.1 System Topology through lstopo ... 17

4.2 CONFIGURING AND TUNING RHEL 8.1 FOR LOW LATENCY PERFORMANCE ... 17
4.2.1 The /proc filesystem ... 17

4.3 TUNING THE SYSTEM WITH LINUX TUNED .. 18
4.3.1 Setting up the Custom HPELowLatency Profile using Linux TUNED 19
4.3.2 Preparing for HPELowLatency using TUNED Custom Profile ..20
4.3.3 Preparing and Setting up one-time.service script ... 24
4.3.4 Verify the Default Boot Kernel to RHEL 8 (8.1) (Example) .. 28
4.3.5 Regenerated Grubby Information of RHEL 8 (8.1) (Example) ... 29

4.4 VERIFYING BOOT PARAMETER CONFIGURATION AFTER REBOOT ... 29
4.4.1 Boot Parameters ... 29

 SYSJITTER ... 30

5.1 INSTALLING SYSJITTER ... 30
5.2 RUNNING SYSJITTER .. 30

5.2.1 Preparation and Checkup ... 32
5.3 LAUNCHING SYSJITTER .. 32
5.4 JITTER ANALYSIS FROM SYSJITTER OUTPUT .. 33

5.4.1 Individual Core Statistics by Example on AMD EPYC 7F32 (2 Sockets) 33
5.5 QUICK ANALYSIS .. 34
5.6 DEEPER ANALYSIS .. 34

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 4

 Overview
Low latency market segments, such as financial trading or real time processing, require that servers
provide under 10 µs variation in system response. In the financial world, the ability of companies that
work on High-Frequency Trading (HFT) to make uncompromisingly fast executions in the stock market is
pivotal to their success and profitability. Here even microseconds could have a major business impact
and they demand ultra-low latency from compute to network.

This document provides guidance for tuning servers utilizing two AMD EPYC™ 7F32 processors, or other
High Frequency SKUs such as the 7F52 and 7F72 processors, to reach stringent low latency requirements
by reducing unwanted computational Jitter. The guidelines cover hardware configuration, BIOS settings,
operating system kernel configurations, and scripts to control the environment of the target
applications. Read Chapter 2 to understand the system specifications and configuration used for
developing this performance tuning guidelines. This document focuses on the server’s resources and
provide details on tuning the BIOS and OS to optimize the server performance for an HFT environment.

1.1 Sysjitter
Sysjitter is a tool to measure Jitter events from user processes running on specified cores and reports
statistics on the interrupts that occurred. This allows users in the HFT community to ensure their server
is tuned properly to meet their expectations. See Chapter 5 on Sysjitter to learn more about how to run
Sysjitter using a tailored script and what to look for when reading results.

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 5

 Hardware Configuration
This technical paper was written using a HPE ProLiant DL385 Gen10 Plus server with the latest HPE
BIOS (A42 BIOS Rev 1.24) and iLO FW Rev 2.30 running Red Hat Enterprise Linux x86_64 8.1 with
two AMD EPYC 7F32 Processors, and it is applicable to other AMD EPYC High Frequency processors such
as the 7F52 and 7F72. To achieve low latency in the µs range, it is important to understand the hardware
and firmware configuration of the System Under Test (SUT). Important factors affecting response times
include:

• Number of cores
• Execution threads per core
• Number of processors
• Number of NUMA nodes
• CPU and memory arrangement in the NUMA topology
• Cache topology in a NUMA node

If the workload is not limited by memory bandwidth, you may optimize for better latency by running the
memory at 2933 MT/s to synchronize with the Infinity Fabric, which runs at 1467 MHz. Linux based
system tools such as ipmitool, dmidecode, etc. display the configuration at varying levels of detail and in
various formats.

To achieve the best response times, optimize the system topology where possible to match your
operational needs. Be aware of the memory placement, install memory evenly across the NUMA nodes,
and try to maximize the use of local memory. Isolate the cores executing your time- critical application
from the operating system scheduler so that other applications and kernel threads do not steal
execution time from your application.

This Low Latency Performance Tuning Guidelines document is verified on AMD EPYC 7F32 (an 8 Core
Processor) and has been tested on a HPE ProLiant DL385 Gen10 Plus server configured with two AMD
EPYC 7F32 processors. In addition, it is applicable to the AMD EPYC 7F52 and 7F72 processors but may

not be appropriate for servers with other processor SKUs.

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 6

For the purposes of this Low Latency Performance Tuning document the System Under Test (SUT)
was a HPE ProLiant DL385 Gen10 Plus server with the following resource/capacities. For more
details about this server, see its Quick Spec at:
https://h20195.www2.hpe.com/v2/getdocument.aspx?docname=a00073549enw

2nd Generation AMD EPYC™ 7Fx2 Processors
Processor technology 7nm

Processor Type/SKU 7F32

Number of cores 8

Number of Sockets 2

Memory speed used 3200 MT/s

Memory capacity used 512 GB

Storage 1TB OS Drive SSD/NVMe

NIC This is a Single Node SUT based test,
1 GigE Network is sufficient.

https://h20195.www2.hpe.com/v2/getdocument.aspx?docname=a00073549enw

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 7

 BIOS Configuration
Many sources of system latency can be disabled through BIOS settings in the RBSU setup utility. For the
purposes of this document, we have tested with 2 x AMD EPYC 7F32 Processors, 512 GB DRAM at 3200
MT/s, and the Red Hat Enterprise Linux x86_64 8.1 Operating System. The AMD EPYC™ 7F32 Processor
SKU has 8 cores (16 threads with SMT enabled) across 4 Core Complex Dies (CCDs).

AMD EPYC™ 7F32 Processor
Base Frequency 3.7 GHz

Max Boost 3.9 GHz

Number of cores 8

L1 Cache Size 32 KB I + 32 KB D on chip per core

L2 Cache Size 512 KB I+D on chip per core

L3 Cache Size 128 MB I+D on chip per chip, 16 MB per Core

Max memory speed 3200 MT/s

Max memory capacity 4TB

Peripheral Component Interconnect 128 lanes PCIe Gen4

3.1 Considerations
Make sure to review the important notes below before you start configuring the system for Low Latency
Performance Tuning

• Isolate your application’s cores from interrupts as much as possible. Utilize the Linux utilities
and techniques described in this document to optimally manage hardware components and
attributes such as the Network Adapter’s IRQs. See Linux® Network Tuning Guide for AMD
EPYC™ 7002 Series Processor Based Servers for details.

https://developer.amd.com/wp-
content/resources/56739_Linux%20Network%20tuning%20v0.20.pdf

• Maximum performance from CPU cores can be extracted by enabling AMD Core Performance
Boost. When doing so, monitor the operating frequencies of individual cores while running your
workload to determine whether the maximum frequency should be capped (AMD Fmax Boost
Limit) to maintain deterministic timing behavior. High fluctuation in CPU frequencies hurt
consistent system response. For the same reason, Determinism Control should be set to
Performance Deterministic, see Processor Options setting on Power/Performance Determinism
document

• https://www.amd.com/system/files/2017-06/Power-Performance-Determinism.pdfFor
additional information, see Workload Tuning Guide for AMD EPYC™ 7002 Series Processor Based
Servers.
https://developer.amd.com/wp-content/resources/56745_0.80.pdf

https://developer.amd.com/wp-content/resources/56739_Linux%20Network%20tuning%20v0.20.pdf
https://developer.amd.com/wp-content/resources/56739_Linux%20Network%20tuning%20v0.20.pdf
https://www.amd.com/system/files/2017-06/Power-Performance-Determinism.pdf

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 8

3.2 BIOS Profile Settings
The HPE ProLiant DL385 Gen10 Plus server system’s BIOS setup utility provides a list of HPE BIOS
profiles designed and tuned for various types of workloads. You can choose the right options to suit your
workload needs. Two workloads that are relevant for low latency are:

• Low Latency
• Custom

3.2.1 Low Latency
It is recommended to first choose the Low Latency workload Profile. To choose this Low Latency
workload profile,

1. From the BIOS/Platform Configuration (RBSU) menu, select the Low Latency workload Profile.
This selects a combination of BIOS tuning options that HPE engineers have determined to be
appropriate for Low Latency operation.

2. Allow the server to finish booting and run your Sysjitter workloads to observe the core jitter
along with Linux OS tunings recommended in the following chapters.

If you are not getting expected Low Latency performance with low Jitter on the CPU Cores, then use the
optional Custom BIOS Profile and adjust individual BIOS settings knobs.

Note that AMD Core Performance Boost is explicitly disabled in the Low Latency workload profile. If you
desire to enable AMD Core Performance Boost along with that workload profile, first select the Low
Latency workload profile and then change to the Custom workload profile. Doing so will leave the Low
Latency BIOS settings intact, but then allow you to enable AMD Core Performance Boost. Note that it is
not necessary to boot the system between selecting the “Low Latency” workload profile and selecting
the “Custom” workload profile.

3.2.2 Custom
The HPE ProLiant DL385 Gen10 Plus server system’s BIOS has a Custom workload profile that does not
modify any settings but allows changes to all settings. With this selection you can enable your
customized Low Latency settings to achieve the latency options for your workloads.

To configure such customized low latency, from the BIOS/Platform Configuration (RBSU) menu select
the Custom BIOS profile and then adjust BIOS tuning options with your specific settings to customize it
to its best Low Latency configuration for your environment to reduce jitter and improve performance.

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 9

BIOS Custom Profile

Boot Time
Optimizations

Diagnostics Options

Processor Options

Disable SMT, Determinism Control set to Performance Deterministic

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 10

Memory Options Recommended: This Low Latency test has been conducted with NPS=1
Setting only.

Virtualization Options

Boot Options

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 11

Power and Performance
Options

Option: You may increase higher CPU Core Performance by changing
AMD Core Performance Boost to “Enabled”

Processor Prefetcher
Options

I/O Options

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 12

Advanced Options

Advanced Power
Options

Fan and Thermal
Options

Option: To increase more cooling change the Thermal Configuration to
“Increased Cooling”

Advanced Debug
Options

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 13

After the BIOS Settings are complete, save the settings and boot the server. While the server is booting
up, check the initialization screen where it briefly displays the BIOS profile option which you’ve chosen in
order to verify that your workload profile was properly selected.

Below are the screenshot examples for both the Low Latency and the Custom profile setting options.

Low Latency Profile

Custom Profile

After the system boots please run the following system checkup to make sure that your environment is
ready for Linux OS level tunings described in the following sections.

3.3 BIOS, Memory, and CPU Version
The following output from the xsos utility shows BIOS, Memory and CPU Version.

Instructions: https://access.redhat.com/discussions/469323

yum install http://people.redhat.com/rsawhill/rpms/latest-rsawaroha-release.rpm
yum install xsos rsar
xsos --bios (produces the below output)
 BIOS:
 Vend: HPE
 Vers: A42
 Date: 04/29/2020
 BIOS Rev: 1.24
 FW Rev: 2.30 (iLO Version)
 System:
 Mfr: HPE
 Prod: ProLiant DL385 Gen10 Plus
 Vers: Not Specified
 Ser: M77932054N
 UUID: 474e4946-4c41-374d-3739-33323035344e
 CPU:
 2 of 2 CPU sockets populated, 8 cores/16 threads per CPU
 16 total cores, 32 total threads

https://access.redhat.com/discussions/469323
http://people.redhat.com/rsawhill/rpms/latest-rsawaroha-release.rpm

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 14

 Mfr: Advanced Micro Devices, Inc.
 Fam: Zen
 Freq: 3700 MHz
 Vers: AMD EPYC 7F32 8-Core Processor
 Memory:
 Total: 524288 MiB (512 GiB)
 DIMMs: 16 of 160 populated
 MaxCapacity: 4194304 MiB (4096 GiB / 4.00 TiB)

3.3.1 NUMA Node
Output from numactl -H shows NUMA nodes.

available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7
node 0 size: 257464 MB
node 0 free: 250483 MB
node 1 cpus: 8 9 10 11 12 13 14 15
node 1 size: 258018 MB
node 1 free: 251048 MB
node distances:
node 0 1
 0: 10 32
 1: 32 10

3.3.2 Processor
Output from lscpu shows two AMD EPYC 2-Socket 7F32 Processors.

lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 16
On-line CPU(s) list: 0-15
Thread(s) per core: 1 (SMT is OFF in BIOS)
Core(s) per socket: 8
Socket(s): 2
NUMA node(s): 2
Vendor ID: AuthenticAMD
CPU family: 23
Model: 49
Model name: AMD EPYC 7F32 8-Core Processor
Stepping: 0
CPU MHz: 2994.299
BogoMIPS: 7386.00
Virtualization: AMD-V
L1d cache: 32K
L1i cache: 32K
L2 cache: 512K
L3 cache: 16384K
NUMA node0 CPU(s): 0-7
NUMA node1 CPU(s): 8-15
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 15

constant_tsc rep_good nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf pni
pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c
rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch
osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb
cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep
bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves
cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd
arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists
pausefilter pfthreshold avic v_vmsave_vmload vgif umip rdpid overflow_recov succor
smca

3.3.3 DRAM
Output from dmidecode (-t 17  Memory) shows DRAM details.

Handle 0x0027, DMI type 17, 84 bytes
Memory Device
 Array Handle: 0x0010
 Error Information Handle: Not Provided
 Total Width: 72 bits
 Data Width: 64 bits
 Size: 32 GB
 Form Factor: DIMM
 Set: None
 Locator: PROC 1 DIMM 1
 Bank Locator: Not Specified
 Type: DDR4
 Type Detail: Synchronous Registered (Buffered)
 Speed: 3200 MT/s
 Manufacturer: Samsung
 Serial Number: 39CB333
 Asset Tag: Not Specified
 Part Number: M393A4G43AB3-CWE
 Rank: 2
 Configured Memory Speed: 3200 MT/s
 Minimum Voltage: 1.2 V
 Maximum Voltage: 1.2 V
 Configured Voltage: 1.2 V
 Memory Technology: DRAM
 Memory Operating Mode Capability: Volatile memory
 Firmware Version: Not Specified
 Module Manufacturer ID: Bank 1, Hex 0xCE
 Module Product ID: Unknown
 Memory Subsystem Controller Manufacturer ID: Unknown
 Memory Subsystem Controller Product ID: Unknown
 Non-Volatile Size: None
 Volatile Size: 32 GB
 Cache Size: None
 Logical Size: None

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 16

 Operating System
The operating system in the SUT is RedHat Enterprise Linux (RHEL) 8.1. Output from xsos --os
shows Operating System Details.

OS
 Hostname: hpe-lowlat.amd.com
 Distro: [redhat-release] Red Hat Enterprise Linux release 8.1 (Ootpa)
 [os-release] Red Hat Enterprise Linux 8.1 (Ootpa) 8.1 (Ootpa)
 RHN: serverURL = https://enter.your.server.url.here/XMLRPC
 enableProxy = 0
 RHSM: hostname = subscription.rhsm.redhat.com
 proxy_hostname =
 YUM: 3 enabled plugins: debuginfo-install, product-id, subscription-manager
 Runlevel: N 3 (default multi-user)
 SELinux: disabled (default disabled)
 Arch: mach=x86_64 cpu=x86_64 platform=x86_64
 Kernel:
 Booted kernel: 4.18.0-147.5.1.el8_1.x86_64
 GRUB default:
 Build version:
 Linux version 4.18.0-147.5.1.el8_1.x86_64 (mockbuild@x86-vm-
07.build.eng.bos.redhat.com) (gcc version 8.3.1 20190507 (Red Hat 8.3.1-4) (GCC)) #1
SMP Tue Jan 14 15:50:19 UTC 2020

4.1 SUT Topology
After installing the OS, you can view the SUT physical topology using the lstopo topology tool in the
command line interface.

For RHEL 8, use the following repositories to install lstopo, which is a part of the hwloc package. Install
the hwloc-gui package to get the option to format the lstopo output in multiple graphic formats.
Subscriptions are required for repositories in RHEL 8.1. Below are the required subscriptions for lstopo.

Subscription for Red Hat 8
subscription-manager repos --enable=rhel-8-for-x86_64-supplementary-rpms
subscription-manager repos --enable=rhel-8-for-x86_64-baseos-source-rpms
subscription-manager repos --enable=rhel-8-for-x86_64-appstream-source-rpms
yum install hwloc hwloc-gui -y

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 17

4.1.1 System Topology through lstopo
The lstopo tool provides multiple output formats. Figure 1 is an example of graphical output generated
by the following command line.

lstopo --physical --output-format png AMD_EPYC_7F32_8-Core_Processor.png

Figure 1 lstopo output (png) for AMD EPYC® Two-Processor High-Frequency 7F32 SUT

4.2 Configuring and Tuning RHEL 8.1 for Low Latency Performance
This section provides guidelines to configure RHEL 8.1 that would enable the two processor AMD EPYC
7F32 based system to achieve the optimal performance for attaining the best low latency performance
with low jitter for various Financials, Trade and Matching use cases.

4.2.1 The /proc filesystem
The /proc filesystem interface can expose per processor information such as the internal kernel data, the
kernel subsystems, and system devices. To realize Low Latency performance, configure the SUT with
the following kernel parameters.

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 18

4.2.1.1 Tuning Kernel Parameters Using sysctl

The settings of these parameters have been determined through various iterations and experiments,
and they can be made persistent by writing the values into a custom sysctl configuration file and added
it to the /etc/sysctl.d directory.

The below table contains experimented system kernel parameters to override default kernel parameter
values written into a file called 100-lowlatency.conf to help achieve the jitter-less system. The number at
the front of the filename was chosen to be the largest of any named file in this directory so that it would
be read last. The file content of this conf file is listed below:

These settings are read from the /etc/sysctl.d/100-lowlatency.conf file at boot time.

1. Create a file /etc/sysctl.d/100-lowlatency.conf and populate it with the following
parameters

vi /etc/sysctl.d/100-lowlatency.conf

Note: Put the below script inside (Please watch out for any line wrapping issues)

kernel.hung_task_timeout_secs = 600
kernel.numa_balancing = 0
kernel.numa_balancing_scan_delay_ms = 1000
kernel.numa_balancing_scan_period_max_ms = 60000
kernel.numa_balancing_scan_period_min_ms = 1000
kernel.numa_balancing_scan_size_mb = 256
kernel.sched_latency_ns = 24000000
kernel.sched_migration_cost_ns = 50000000
kernel.sched_min_granularity_ns = 100000000
kernel.sched_rt_runtime_us = -1
kernel.timer_migration = 1
kernel.watchdog = 0
kernel.watchdog_cpumask = 0,8
kernel.watchdog_thresh = 10
vm.dirty_background_ratio = 3
vm.dirty_ratio = 10
vm.stat_interval = 3600
vm.swappiness = 0
vm.zone_reclaim_mode = 0
net.ipv4.conf.all.rp_filter = 0

To have the sysctl conf file read and the settings put in effect immediately, the following command can
be used. Run the following command as root to apply these new parameters and make sure there are no
errors.

sysctl -p /etc/sysctl.d/100-lowlatency.conf

4.3 Tuning the system with Linux Tuned
You can tune additional parameters using Linux TUNED. Linux TUNED is a customizable application that
helps to tune and optimize your system to reach its best performance. The TUNED application includes
profiles with predefined tuning options such as throughput-performance, latency-performance, and cpu-
partitioning. You can use these tuned-adm profiles instead of writing directly to the /proc filesystem,
using sysctl, and applying boot command options. However, if you stopped or disabled the Tuned
daemon, you must restart it to apply Tuned profiles.

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 19

4.3.1 Setting up the Custom HPELowLatency Profile using Linux TUNED
This section describes the process of preparing your server using a customized TUNED profile for low
latency tuning. The HPELowLatency profile modifies several system kernel settings as well as
configuring boot time options and performing other tuning operations. In addition, a “one-time" Linux
Service is added to the System startup process, executing a “one-shot.sh” shell script during system
boot. You can create the indicated files using the steps below and apply them without any additional
modifications to your HPE ProLiant Gen10 Plus server with two AMD EPYC High Frequency processors,
such as the 7F32.

When you copy and paste, be sure to inspect the code. The code page lines are wrapped due to
the page size of this document, so after copying check for any unwanted spaces, comments,
and line breaks, and resolve those issues before executing.

Be sure that TUNED is configured for static settings. To reduce jitter and attain Low Latency
performance, instead of using a predefined profile, we are creating a customized HPELowLatency
Tuned profile.

Follow the steps described below to create the custom HPELowLatency tuned profile and modify the
tuned.conf and cpu-partitioning.conf files.

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 20

4.3.2 Preparing for HPELowLatency using TUNED Custom Profile

4.3.2.1 Configuration 1 – HPELowLatency
4.3.2.1.1 Add the configuration settings in “tuned.conf” under /etc/tuned/HPELowLatency directory
mkdir /etc/tuned/HPELowLatency
vi /etc/tuned/HPELowLatency/tuned.conf
Note: Put the below script inside (Please watch out for any line wrapping issues)
##############################START##
#! HPELowLatency includes several files:\
#! This file, /etc/tuned/HPELowLatency/tuned.conf, which is a tuned profile based on
the cpu-partitioning profile
#! A helper script file /etc/tuned/HPELowLatency/script.sh that is used by cpu-
partitioning-variables.conf, /usr/local/bin/oneshot_script.sh and /opt/run_sysjit.sh
script to Run Sysjitter program in Chapter 5
#! The global tuned configuration file /etc/tuned/tuned-main.conf
#! /etc/tuned/cpu-partitioning-variables.conf, which sets variable for the cpu-
partitioning profile
#!
#! In addition to the "tuned" files are these systemd startup files
#! /etc/systemd/system/one-time.service that defines a service to execute commands
at startup
#! /usr/local/bin/oneshot_script.sh, which is a script to run at startup to affect
additional changes.

[main]
summary=Related to HPELowLatency modifications and its cpu-partitioning profile
description=Modifies the cpu-partitioning profile to leave the first CPU of each
NUMAnode for housekeeping, allow balancing on the next few, and disable balancing on
the rest.

include=cpu-partitioning

[disk]
elevator=none

[bootloader]
#! A problem in tuned and/or grub is causing the first word to get eaten up.
#! The recommendation is as follows, quoting my Red Hat contact:
#! The workaround used is to just add the truncated boot flags you're
#! missing to the GRUB_CMDLINE_LINUX variable in the /etc/default/grub file.
#! Then run "grub2-mkconfig -o /boot/grub2/grub.cfg" to pick it up, and reboot.
#! Using a workaround of a throw-away first word, add "quiet" as the first option to
#! cmdline. Please make sure that the below cmdline is a one line entry and watch out
#! for line wrapping.

cmdline=quiet selinux=0 mce=ignore_ce ipv6.disable=1 audit=0 nmi_watchdog=0
hugepagesz=2MB hugepages=6000 default_hugepagesz=2MB transparent_hugepage=never
tsc=reliable pcie_aspm=off cpuidle.off=1 rcu_nocb_poll idle=poll processor.max_cstate=0

#! Reference from https://tuned-project.org/docs/tuned_devconf_2019.pdf
[scheduler]
group.ksoftirqd=${f:exec:/etc/tuned/HPELowLatency/script.sh:ksoftirqd}
group.rcub=${f:exec:/etc/tuned/HPELowLatency/script.sh:rcub}
##############################END##
Note:
a. Kernel Boot Parameters “cmdline” are implemented with tuned.conf file and
experiment your preferred boot time arguments as permanent.
b. cat /etc/default/grub and make sure your changes are in effect after the
final reboot.
##############################END##

https://tuned-project.org/docs/tuned_devconf_2019.pdf

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 21

This new HPELowLatency Tuned profile also includes the “cpu-partitioning” profile and its associated
file cpu-partitioning-variables.conf (See Section 4.3.2.1.3), which sets the housekeeping and isolated
cores appropriately for the installed AMD EPYC High Frequency processors.

4.3.2.1.2 Add the Tuned “script.sh” under /etc/tuned/HPELowLatency directory
vi /etc/tuned/HPELowLatency/script.sh

Note: Put the below script (Please watch out for any line wrapping issues)

#!/bin/bash
#############################START##
function range_expand () {
 eval /usr/bin/printf "%s" $(/usr/bin/printf $*| \
 sed -r 's:.*:{&}:;s:([0-9]+)-([0-9]+):{\1..\2}:g;s:^\{([^,]*)\}$:\1:');
}

#! Not used
function getPopulatedNodes () {
 local NodeList
 local Node

 NodeList=($(range_expand $(cat /sys/devices/system/node/has_cpu)))
 if ["${NodeList}" = ""]; then
 for Node in \
 $(cd /sys/devices/system/node/; ls -d node*| sed '/node[0-9]\{1,\}/s/node//')
 do
 NodeList=(${NodeList[*]} $(/usr/bin/echo $(($(/usr/bin/echo \
 "16 i $(sed 's/,//g;s/.*/\U&/' /sys/devices/system/node/node${Node}/cpumap) p" | \
 dc) == 0 ? 0 : $Node))))
 done
 fi
 /usr/bin/printf "${NodeList[*]}"
}

function _HousekeepingCpus () {
 local Params
 local List
 local HT
 local Cores
 local Processors
 local Count

#! "Params" gets ThreadsPerCore CoresPerProcessor Processors
 Params=($(/usr/bin/lscpu | \
 /usr/bin/awk \
'/(^Thread\(s\) per core:|^Core\(s\) per socket:|^[CPU]*[sS]ocket\(s\):)/{print $NF}'))
 unset List
 for HT in $(seq 0 $((${Params[0]}-1))); do
 for Cores in ${Params[1]}; do
 for Processors in $(seq 0 $((${Params[2]}-1))); do
 for Count in $(seq 0 $((${HousekeepingCores}-1))); do
List=(${List[*]} $((${HT}*${Params[1]}*${Params[2]}+${Processors}*${Cores}+${Count})))
 done
 done
 done
 done
 /usr/bin/printf "$(echo ${List[*]}| sed 's/ /,/g')"
}

function _NoBalanceCpus () {
 local Params
 local List

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 22

 local HT
 local Cores
 local Processors
 local Count

 Params=($(/usr/bin/lscpu | \
 /usr/bin/awk \
'/(^Thread\(s\) per core:|^Core\(s\) per socket:|^[CPU]*[sS]ocket\(s\):)/{print $NF}'))
 unset List
 for HT in $(seq 0 $((${Params[0]}-1))); do
 for Cores in ${Params[1]}; do
 for Processors in $(seq 0 $((${Params[2]}-1))); do
 for Count in $(seq ${HousekeepingCores} ${NoBalanceCores}); do
List=(${List[*]} $((${HT}*${Params[1]}*${Params[2]}+${Processors}*${Cores}+${Count})))
 done
 done
 done
 done
 /usr/bin/printf "$(/usr/bin/echo ${List[*]}| sed 's/ /,/g')"
}

function _IsolatedCpus () {
 _NoBalanceCpus
}

function _HousekeepingMask () {
 local Params
 local Mask=0
 local HT
 local Cores
 local Processors
 local Count

#! "Params" gets ThreadsPerCore CoresPerProcessor Processors
 Params=($(/usr/bin/lscpu | \
 /usr/bin/awk \
'/(^Thread\(s\) per core:|^Core\(s\) per socket:|^[CPU]*[sS]ocket\(s\):)/{print $NF}'))
 for HT in $(seq 0 $((${Params[0]}-1))); do
 for Cores in ${Params[1]}; do
 for Processors in $(seq 0 $((${Params[2]}-1))); do
 for Count in $(seq 0 $((${HousekeepingCores}-1))); do
Mask=$((Mask|=1<<(${HT}*${Params[1]}*${Params[2]}+${Processors}*${Cores}+${Count})))
 done
 done
 done
 done
 /usr/bin/printf "%x" $Mask
}

function _NoBalanceMask () {
 local HKMask=0x$(_HousekeepingMask)
 local AllMask=0x$((-1<<$(grep -c processor /proc/cpuinfo)))
 local Mask=$((~$HKMask^$AllMask))
 /usr/bin/printf "%x" $Mask
}

function _IsolatedMask () {
 _NoBalanceMask
}

function _ksoftirqd () {
 local Mask=$(_HousekeepingMask)

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 23

 /usr/bin/printf '0:f:2:%s:ksoftirqd.*' $Mask
}

function _rcub () {
 local Mask=$(_HousekeepingMask)
 /usr/bin/printf '0:f:4:%s:rcub.*' $Mask
}

#! function main () {
#! These are the number of CPUs with this designation. A negative number means "all but"
#! They are per NUMAnode:
 HousekeepingCores=1
 NoBalanceCores=$(($(/usr/bin/lscpu | \
 /usr/bin/awk '/^Core\(s\) per socket:/{print $NF}')-${HousekeepingCores}))
 if ["${DefineFunctionsOnly}" != "1"]; then
 Workload=_${1}
 shift
 if ["$(type -t ${Workload})" = "function"] ; then
 ${Workload} $*
 fi
 fi
#! }
##############################END##

chmod +x /etc/tuned/HPELowLatency/script.sh

Be aware of the following:

• Due to a GRUB generation bug, the first token in “cmdline” gets consumed and lost. As a
workaround, add the single-token option “quiet” as the first token.

• Kernel Boot Parameters “cmdline” are implemented with tuned.conf file. Specify your desired
boot time options in that section.

• Before rebooting the server, check the TUNED_BOOT_CMDLINE in the file
/etc/tuned/bootcmdline after applying the tuned profile.

• After the boot please look at /proc/cmdline where the reboot has taken the Tuned
parameters into account.

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 24

4.3.2.1.3 Add the Tuned “cpu-partitioning-variables.conf” under /etc/tuned directory

Edit the existing cpu-partitioning-variables.conf file and add/modify the below entries to reflect
Isolated CPU(s).

vi /etc/tuned/cpu-partitioning-variables.conf

Note: Put the below script (Please watch out for any line wrapping issues)

#############################START##
#! This file is included in the [variables] section of
/usr/lib/tuned/cpu-partitioning/tuned.conf

housekeeping_cpus=${f:exec:/etc/tuned/HPELowLatency/script.sh:HousekeepingCpus}
isolated_cores=${f:cpulist_invert:${housekeeping_cpus}}
no_balance_cores=${f:exec:/etc/tuned/HPELowLatency/script.sh:NoBalanceCpus}

##############################END##

4.3.3 Preparing and Setting up one-time.service script

Execute the BASH script, which has been tailored for a server with two AMD EPYC High Frequency
processors such as 7F32 (8 Core) processors, during the boot process to set the required Linux kernel
parameters.

4.3.3.1 Configuration 2  Setting up one-time.service and oneshot_script.sh
4.3.3.1.1 Add the systemctl service settings in “one-time.service” under /etc/systemd/system/ directory

Below command will open a new service file called “one-time.service” in VI editor and add the below
configuration settings

SYSTEMD_EDITOR=/bin/vi /usr/bin/systemctl edit --force --full one-time.service

Note: Put the below script (Please watch out for any line wrapping issues)

##############################START##

[Unit]
Description=Execute this script to setup the Low Jitter environment from CPU cores to Network
After=network.target

[Service]
Type=oneshot
ExecStart=/usr/local/bin/oneshot_script.sh
TimeoutStartSec=0

[Install]
WantedBy=default.target

##############################END##

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 25

4.3.3.1.2 Add the /usr/local/bin/oneshot_script.sh under /usr/local/bin directory

Follow the steps below to complete reconfiguration and to reboot the system:

vi /usr/local/bin/oneshot_script.sh

Note: Put the below script (Please watch out for any line wrapping issues)

#!/bin/bash
##START##

Script Written by
Sylvester Rajasekaran, DEAE, AMD Inc., Chuck Newman, HPE
October 30th, 2020

/usr/local/bin/oneshot_script.sh is an environment setup script for an
AMD EPYC Hi-Frequency Processors based server (e.g.) 7F32 (2 Socket x 8 Cores).
This automatic script would help customers in HFT/FSI domains to observe
Jitters via any Jitter observing Programs such as "sysjitter"

################################ T O P O L G Y ##################################

Example: In this System Topology scenario there are
(a) 2 Sockets 7F32 (2 Socket x 8 Cores)
(b) 512GB DRAM (Memory) with a NUMA Topology setting in BIOS as NPS=1

NUMA - inventory of available nodes on the system ###############################
numactl -H
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7
node 0 size: 257578 MB
node 0 free: 254656 MB
node 1 cpus: 8 9 10 11 12 13 14 15
node 1 size: 258043 MB
node 1 free: 255865 MB
node distances:
node 0 1
0: 10 32
1: 32 10

NUMA - NUMA policy settings
numactl -s

policy: default
preferred node: current
physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
cpubind: 0 1
nodebind: 0 1
membind: 0 1

################################ S C R I P T D E T A I L S ##########################

This script gets executed during boot time as part of systemd
(systemctl {enable|startup|stop|status} one-time.service)
called by the below service script to execute
/etc/systemd/system/one-time.service
==> /usr/local/bin/oneshot_script.sh

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 26

Reference: https://access.redhat.com/solutions/3152271

Example: AMD EPYC 7F32 (8 Cores) Dual Socket system

Socket 1 Socket 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 --> All are ALLOWED by default
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 -->
(where Core# 0 and 8 are Housekeeping Cores dedicated for Linux OS and
leaving the rest of the 14 Cores as ISOLATED Cores for Jitter
observation)
which turns in to (1111111011111110) ===> AllowedOSBINCores="0101"
#CPU HEX MASK fe fe ===> AllowedCPUMask="fefe"
#CPU CORES LIST FOR OS 8 0 ===> AllowedOSCPUCores="0,8"

mpid=$$
LOGDIR=/opt/$(date +%m%d%Y_%H%M%S)
mkdir -p ${LOGDIR}

#+++ IMPORTANT NOTE +++
Example:
AllowedCPUMask="fefe"
AllowedOSCPUCores="0,8"
AllowedOSBINCores="0101"

Variable Assignments are automatically assigned based on the type of AMD EPYC Processor SKU
by calling /etc/tuned/HPELowLatency/script.sh shell script to get
the individual parameters and pass it on to the respective below variables
(AllowedCPUMask, AllowedOSCPUCores, AllowedOSBINCores)

DefineFunctionsOnly=1; . /etc/tuned/HPELowLatency/script.sh
AllowedCPUMask="$(_IsolatedMask)"
AllowedOSCPUCores="$(_HousekeepingCpus)"
AllowedOSBINCores="$(_HousekeepingMask)"
echo -e "Allowed CPU MASK (Hex): ${AllowedCPUMask}"
echo -e "Allowed CPU Cores for OS: ${AllowedOSCPUCores}"
echo -e "Allowed CPU Cores for OS (BIN): ${AllowedOSBINCores}"

0. Set and Read New Sysctl values which are required for Less Jitter

sysctl -p /etc/sysctl.d/100-lowlatency.conf

1. Checking whether the System’s Tuned Profile set to "HPELowLatency"
which includes "cpu-partitioning"
echo "Checking current tuned profile"
if ["${CurrentProfile}" != "HPELowLatency"]
then
 tuned-adm profile HPELowLatency
 tuned-adm active | tee -a ${LOGDIR}/tuned_profile_active_${mpid}.log
 cat ${LOGDIR}/tuned_profile_active_${mpid}.log
fi

2. Set affinity for the writeback threads. These threads should be moved to only the
housekeeping cpus in our case ${AllowedOSBINCores}

echo 0 > /sys/bus/workqueue/devices/writeback/numa

https://access.redhat.com/solutions/3152271

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 27

cat /sys/bus/workqueue/devices/writeback/numa
echo ${AllowedOSBINCores} > /sys/bus/workqueue/devices/writeback/cpumask
cat /sys/bus/workqueue/devices/writeback/cpumask | tee -a ${LOGDIR}/cpumask_${mpid}.log

3. Setting All CPU Cores Governor to Performance
NP=$(grep -c processor /proc/cpuinfo)
if [-e /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor]; then
 for sg in $(seq 0 $((${NP}-1))); do
 echo performance > /sys/devices/system/cpu/cpu${sg}/cpufreq/scaling_governor
 done
 for sg in $(seq 0 $((${NP}-1))); do
 cat /sys/devices/system/cpu/cpu${sg}/cpufreq/scaling_governor
 done | tee -a ${LOGDIR}/cpu_scaling_gov_${mpid}.log
fi

4. Switching OFF and ON of the Cores (Except Housekeeping Core 0 and 8)
echo -e "It takes few more seconds... Please wait..."
NP=$(grep -c processor /proc/cpuinfo)
for OffOn in 0 1; do
 for Cpu in $(seq 1 $((${NP}-1))) $(seq $((${NP}/2+1)) $((${NP}-1))); do
 echo ${OffOn} > /sys/devices/system/cpu/cpu${Cpu}/online
 sleep 1
 done
done
if [-e /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor]; then
 for sg in $(seq 1 $((${NP}-1))); do
 cat /sys/devices/system/cpu/cpu${sg}/cpufreq/scaling_governor
 done | tee -a ${LOGDIR}/cpu_scaling_gov_${mpid}.log
fi

5. Flush/Clear unwanted IPV4/IPV6 Network related stuff
iptables -F; iptables -t nat -F; iptables -t mangle -F; ip6tables -F
iptables -X; iptables -t nat -X; iptables -t mangle -X; ip6tables -X
iptables -t raw -F; iptables -t raw -X
modprobe -r ebtable_nat ebtables
modprobe -r ipt_SYNPROXY nf_synproxy_core xt_CT nf_conntrack_ftp \
 nf_conntrack_tftp nf_conntrack_irc nf_nat_tftp ipt_MASQUERADE \
 iptable_nat nf_nat nf_conntrack_ipv4 nf_nat \
 nf_conntrack_ipv6 xt_state xt_conntrack iptable_raw \
 nf_conntrack iptable_filter iptable_raw iptable_mangle \
 ipt_REJECT xt_CHECKSUM ip_tables nf_defrag_ipv4 ip6table_filter \
 ip6_tables nf_defrag_ipv6 ipv6t_REJECT xt_LOG xt_multiport \
 nf_conntrack

6. RCU (READ COPY UPDATE) to use only the Housekeeping Cores
We have already set the cpu-partitioning profile in Step 1 to
exclude (in this case Core 0 and 8) for rcu tasks at post-boot,
${AllowedOSCPUCores} for our housekeeping CPUs

for i in `pgrep rcu`; do taskset -pc ${AllowedOSCPUCores} $i; done

7. Modifying by forcing the IRQ Values to use ${AllowedOSBINCores}

for irq in /proc/irq/*/smp_affinity; do
 echo ${AllowedOSBINCores} > $irq 2>/dev/null
done | tee -a ${LOGDIR}/IRQ_new_values_${mpid}.log
cat ${LOGDIR}/IRQ_new_values_${mpid}.log

8. Modify kswapd to use only the OS Cores
for i in `pgrep kswapd?`; do taskset -p ${AllowedOSBINCores} $i; done
for i in `pgrep kswapd?`; do
 taskset -cp $i
done | tee -a ${LOGDIR}/kswapd_new_values_${mpid}.log

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 28

9. Switching OFF unwanted Systemd services
for SERVICE in avahi-daemon.service bluetooth.service chronyd.service \
 crond.service dbus.service dnsmasq.service dnsmasq.service \
 firewalld.service firewalld.service iprdump.service iprinit.service \
 iprupdate.service kdump.service ksm.service libstoragemgmt.service \
 libvirtd.service lvm2-monitor.service mcelog.service \
 mdmonitor.service messagebus.service ModemManager.service \
 nfs-client.target postfix.service rhnsd.service rhsmcertd.service \
 rpcbind.service rpcbind.socket systemd-journald.service tuned.service \
 systemd-journald.socket virtlogd.socket wpa_supplicant.service
do
 systemctl stop $SERVICE
 systemctl is-active $SERVICE | \
 tee -a ${LOGDIR}/inactive_service_status_${mpid}.log
done
##END##

chmod +x /etc/systemd/system/one-time.service
chmod +x /usr/local/bin/oneshot_script.sh
systemctl daemon-reload
systemctl enable one-time.service
systemctl list-unit-files one-time.service --state=enabled
UNIT FILE STATE
one-time.service enabled
1 unit files listed.

systemctl reboot

The one-time.service will call the oneshot_script.sh when the system boots and comes back
online and implements all the required settings as per the script.

Once the system is back online, login as root and check whether the user PID(s) are associated with only
the first CPU of each processor.

taskset -cp $$
pid 7032's current affinity list: 0,8

4.3.4 Verify the Default Boot Kernel to RHEL 8 (8.1) (Example)
grubby --default-kernel
/boot/vmlinuz-4.18.0-147.5.1.el8_1.x86_64

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 29

4.3.5 Regenerated Grubby Information of RHEL 8 (8.1) (Example)
grubby --info /boot/vmlinuz-4.18.0-147.5.1.el8_1.x86_64
index=1
kernel="/boot/vmlinuz-4.18.0-147.5.1.el8_1.x86_64"
args="ro crashkernel=auto resume=/dev/mapper/rhel-swap rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap rhgb quiet
kernelopts=root=/dev/mapper/rhel-root ro crashkernel=auto resume=/dev/mapper/rhel-swap rd.lvm.lv=rhel/root
rd.lvm.lv=rhel/swap rhgb quiet $tuned_params quiet selinux=0 mce=ignore_ce ipv6.disable=1 audit=0
nmi_watchdog=0 hugepagesz=2MB hugepages=6000 default_hugepagesz=2MB transparent_hugepage=never
tsc=reliable pcie_aspm=off cpuidle.off=1 rcu_nocb_poll idle=poll processor.max_cstate=0 nohz=on
nohz_full=1,2,3,4,5,6,7,9,10,11,12,13,14,15 rcu_nocbs=1,2,3,4,5,6,7,9,10,11,12,13,14,15
tuned.non_isolcpus=00000101 intel_pstate=disable nosoftlockup $tuned_params"
root="/dev/mapper/rhel-root"
initrd="/boot/initramfs-4.18.0-147.5.1.el8_1.x86_64.img $tuned_initrd"
title="Red Hat Enterprise Linux (4.18.0-147.5.1.el8_1.x86_64) 8.1 (Ootpa)"
id="16699b9231234d6f83e12e4549b18673-4.18.0-147.5.1.el8_1.x86_64"

Now reboot the system using the following command:

systemctl reboot

4.4 Verifying Boot Parameter Configuration After Reboot

4.4.1 Boot Parameters
After rebooting, check the running kernel to verify that the required settings including the boot
parameters options set by HPELowLatency Profile in TUNED are enabled.

cat /proc/cmdline

Note: This command line information shows the server with 2 AMD EPYC High Frequency
processors such as the AMD EPYC 7F32 (8 core each) and how the cores are isolated
according to the HPELowLatency Tuned Profile.

BOOT_IMAGE=(hd1,gpt2)/vmlinuz-4.18.0-147.5.1.el8_1.x86_64 root=/dev/mapper/rhel-root ro crashkernel=auto
resume=/dev/mapper/rhel-swap rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap rhgb quiet selinux=0 mce=ignore_ce
ipv6.disable=1 audit=0 nmi_watchdog=0 hugepagesz=2MB hugepages=6000 default_hugepagesz=2MB
transparent_hugepage=never tsc=reliable pcie_aspm=off cpuidle.off=1 rcu_nocb_poll idle=poll
processor.max_cstate=0 nohz=on nohz_full=1,2,3,4,5,6,7,9,10,11,12,13,14,15
rcu_nocbs=1,2,3,4,5,6,7,9,10,11,12,13,14,15 tuned.non_isolcpus=00000101 intel_pstate=disable nosoftlockup

 Sysjitter
Solarflare’ s sysjitter utility measures the extent to which the system introduces jitter and so impacts on
the user level process. Sysjitter runs a thread on each processor core and when the thread is interrupted
from the core it measures for how long. A common cause of such jitter is when another task is scheduled
on the core, although shorter duration events such as cache misses can also be detected if the jitter
threshold is set low enough. Examples of tasks that induce jitter are other user processes that the
scheduler schedules on the core, and even the scheduler itself will induce jitter.

Sysjitter produces summary statistics for each processor core. The sysjitter utility can be downloaded
from www.openonload.org

5.1 Installing Sysjitter
The sysjitter utility can be downloaded from https://www.openonload.org/download/sysjitter/. As of
the time this document was written, the latest version of sysjitter is version 1.4. See the sysjitter
README file for details on building and running sysjitter.

For Example, in our case we have installed the sysjitter tool on /opt/sysjitter-1.4 directory.

5.2 Running Sysjitter
After installing sysjitter, you need to create a Bash script as below and call it as /opt/run_sysjit.sh. See
the below Sysjitter execution Script for any AMD EPYC High Frequency processors such as the 7F32.

https://gist.github.com/alexeiz/3ea71fddfeddde3f64f5
http://www.openonload.org/
https://www.openonload.org/download/sysjitter/sysjitter-1.4.tgz

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 31

vi /opt/run_sysjit.sh
chmod +x /opt/run_sysjit.sh

Note: Put the below script (Please watch out for any line wrapping issues)
#!/bin/bash
##############################START##
tput clear
myhost=$(hostname -s)
mydate=$(date +%Y%m%d%H%M%S%Z)
repdir=/lowlatency/${mydate}
echo -e "Target Directory: ${repdir}/${myhost}.${mydate}"
mkdir -p ${repdir}
jitfile="${repdir}/sysjitter.${myhost}.${mydate}"

Function to get the # of NoBalancCpus

Variable Assignment Automatically based on Type of CPU and getting the cores by
calling /etc/tuned/HPELowLatency/script.sh BASH script
to get the # of Cores of the Processor which are
NOT HouseKeeping Cores (_NoBalanceCpus) parameter and pass it on to lim_cores
variable

Example:
On a 2 Socket AMD EPYC 7F32 x 8 Cores without HT = 16 Cores Total
OS Housekeeping Cores are 0 and 8
Thus, observing jitter in these cores 1,2,3,4,5,6,7,9,10,11,12,13,14,15

DefineFunctionsOnly=1; . /etc/tuned/HPELowLatency/script.sh
lim_cores=$(_NoBalanceCpus)
printf "These are the List of Cores will be observed by Sysjitter \n${lim_cores}\n"

Collect Jitter Data

echo -e ""
echo -e "Jitter Data Collection has started using /opt/run_sysjit.sh script"
echo -e "using sysjitter program for Cores ${lim_cores}"
echo -e "with ${1} Threshold for ${2} seconds..."
echo -e ""
echo -e "\tPlease wait..."
read a
time /opt/sysjitter-1.4/sysjitter \
 --raw ${jitfile} --runtime ${2} --cores ${lim_cores} ${1} > ${jitfile}.txt
column -t ${jitfile}.txt | tee -a ${jitfile}.tab
echo -e ""
echo -e ""
echo -e "Jitter Data Collection is now complete"
echo -e "using sysjitter for Cores ${lim_cores} with ${1} Threshold for ${2}
seconds..."
echo -e "Jitter Data Collection is now complete for Cores ${lim_cores}"
echo -e "with ${1} Threshold for ${2} seconds...\nCheck file at ${jitfile}.tab file"
echo -e ""
echo -e ""
##END##

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 32

5.2.1 Preparation and Checkup
Before running Sysjitter make sure your System is healthy and ready for the Jitter observation.

• Load Average values are close to 0.00 (e.g.) see below and good to execute the script

uptime
 12:17:08 up 46 days, 1:04, 2 users, load average: 0.00, 0.00, 0.00

It should not be like the one below (Wait for some more minutes when the system load
goes to near 0.00)

uptime
 12:36:21 up 46 days, 1:24, 2 users, load average: 7.22, 2.61, 0.93

• Check and confirm your system are set with “HPELowLatency” Tuned Profile and your
Terminal/Console where you are running Sysjitter program is currently set with Housekeeping
Cores only.

tuned-adm active
It seems that tuned daemon is not running, preset profile is not activated.
Preset profile: HPELowLatency
Note:
• The above message shows that the system’s TUNED Profile is now set with
HPELowLatency.
• It is intentional that the TUNED Daemon is not running as we have switched off
the System Level Daemon through our startup Bash script (oneshot_script.sh) on Step
9
taskset -cp $$
pid 16382's current affinity list: 0,8

5.3 Launching Sysjitter
As a root user, go to the Sysjitter directory /opt/sysjitter-1.4. where you have created the Bash, script
called (run_sysjit.sh)

cd /opt/sysjitter-1.4

./run_sysjit.sh 100 610

Where,

1. CONSTANT 100 (Preferred)  is the threshold in (ns) ignore any interrupts shorter than this
period.

2. VARIABLE 610  # of Seconds (10 Minutes and plus 10 seconds adding 1 second extra for every
minute).

When the program completes execution, it generates a CSV file as output into a directory, with current
date and time created through the script.

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 33

5.4 Jitter Analysis from Sysjitter Output

5.4.1 Individual Core Statistics by Example on AMD EPYC 7F32 (2 Sockets)
The following is a sample output of the individual core statistics files and the formatted Tab file:

-rw-r--r-- 1 root root 386 Jun 22 17:33 sysjitter.hpe-lowlat.20200622172324PDT.15

-rw-r--r-- 1 root root 56 Jun 22 17:33 sysjitter.hpe-lowlat.20200622172324PDT.14

-rw-r--r-- 1 root root 388 Jun 22 17:33 sysjitter.hpe-lowlat.20200622172324PDT.13

-rw-r--r-- 1 root root 56 Jun 22 17:33 sysjitter.hpe-lowlat.20200622172324PDT.12

-rw-r--r-- 1 root root 56 Jun 22 17:33 sysjitter.hpe-lowlat.20200622172324PDT.11

-rw-r--r-- 1 root root 386 Jun 22 17:33 sysjitter.hpe-lowlat.20200622172324PDT.10

-rw-r--r-- 1 root root 386 Jun 22 17:33 sysjitter.hpe-lowlat.20200622172324PDT.09

-rw-r--r-- 1 root root 56 Jun 22 17:33 sysjitter.hpe-lowlat.20200622172324PDT.07

-rw-r--r-- 1 root root 56 Jun 22 17:33 sysjitter.hpe-lowlat.20200622172324PDT.06

-rw-r--r-- 1 root root 539 Jun 22 17:33 sysjitter.hpe-lowlat.20200622172324PDT.05

-rw-r--r-- 1 root root 56 Jun 22 17:33 sysjitter.hpe-lowlat.20200622172324PDT.04

-rw-r--r-- 1 root root 56 Jun 22 17:33 sysjitter.hpe-lowlat.20200622172324PDT.03

-rw-r--r-- 1 root root 386 Jun 22 17:33 sysjitter.hpe-lowlat.20200622172324PDT.02

-rw-r--r-- 1 root root 386 Jun 22 17:33 sysjitter.hpe-lowlat.20200622172324PDT.01

-rw-r--r-- 1 root root 3669 Jun 22 17:33 sysjitter.hpe-lowlat.20200622172324PDT.tab

The following is an example of formatted output for easier readability. Here the output tab file
sysjitter.hpe-lowlat.20200622172324PDT.tab was formatted by the Linux
command (column -t).

Figure 2 Sysjitter results

Performance Tuning Guidelines for Low Latency Response on AMD EPYC™ 7002 Series Processor Based Servers

 57037_1.0 34

5.5 Quick analysis
From the above formatted tab file sysjitter.hpe-lowlat.20200622172324PDT.tab output shows various
statistics related to Interrupts observed by sysjitter on the 14 isolated cores on the 2 AMD EPYC 7F32
processors (1,2,3,4,5,6,7,9,10,11,12,13,14,15) during the 610 seconds run. In this example there are a total of
10 Interrupts encountered, marked in red rectangles in Figure 2, during the 10 minutes run. It is strongly
recommended that you also peruse the sysjitter per-core output files, which show the time-history of
jitter events during the sysjitter execution time window.

These results are very good, showing that the jitter is reduced by the BIOS, RHEL OS and TUNED
settings/tunings, which demonstrate this HPE ProLiant DL385 Gen10 Plus server with two AMD EPYC
7F32 processors to be a well-tuned server with negligible jitter. As such, this server is an excellent choice
for low latency workloads in the High Frequency Trading (HFT) submarket of the Financial Services
industry, which is exceptionally demanding on computer hardware. Great care must be taken in
architecting these solutions to ensure that deployments perform as required. Hewlett Packard
Enterprise, working closely with industry-leading partners, has a long history of configuring and
marketing servers to enable many of the world’s leading financial institutions to meet this challenge.

5.6 Deeper analysis
Should you decide to go for a deeper analysis of this Low Latency Performance Tuning, contact your
AMD or HPE representative for further assistance.

	Chapter 1 Overview
	1.1 Sysjitter

	Chapter 2 Hardware Configuration
	Chapter 3 BIOS Configuration
	3.1 Considerations
	3.2 BIOS Profile Settings
	3.2.1 Low Latency
	3.2.2 Custom

	3.3 BIOS, Memory, and CPU Version
	3.3.1 NUMA Node
	3.3.2 Processor
	3.3.3 DRAM

	Chapter 4 Operating System
	4.1 SUT Topology
	4.1.1 System Topology through lstopo

	4.2 Configuring and Tuning RHEL 8.1 for Low Latency Performance
	4.2.1 The /proc filesystem
	4.2.1.1 Tuning Kernel Parameters Using sysctl

	4.3 Tuning the system with Linux Tuned
	4.3.1 Setting up the Custom HPELowLatency Profile using Linux TUNED
	4.3.2 Preparing for HPELowLatency using TUNED Custom Profile
	4.3.2.1 Configuration 1 – HPELowLatency
	4.3.2.1.1 Add the configuration settings in “tuned.conf” under /etc/tuned/HPELowLatency directory
	4.3.2.1.2 Add the Tuned “script.sh” under /etc/tuned/HPELowLatency directory
	4.3.2.1.3 Add the Tuned “cpu-partitioning-variables.conf” under /etc/tuned directory

	4.3.3 Preparing and Setting up one-time.service script
	4.3.3.1 Configuration 2 (Setting up one-time.service and oneshot_script.sh
	4.3.3.1.1 Add the systemctl service settings in “one-time.service” under /etc/systemd/system/ directory
	4.3.3.1.2 Add the /usr/local/bin/oneshot_script.sh under /usr/local/bin directory

	4.3.4 Verify the Default Boot Kernel to RHEL 8 (8.1) (Example)
	4.3.5 Regenerated Grubby Information of RHEL 8 (8.1) (Example)

	4.4 Verifying Boot Parameter Configuration After Reboot
	4.4.1 Boot Parameters

	Chapter 5 Sysjitter
	5.1 Installing Sysjitter
	5.2 Running Sysjitter
	5.2.1 Preparation and Checkup

	5.3 Launching Sysjitter
	5.4 Jitter Analysis from Sysjitter Output
	5.4.1 Individual Core Statistics by Example on AMD EPYC 7F32 (2 Sockets)

	5.5 Quick analysis
	5.6 Deeper analysis

